An S4 class to represent a multivariate diagonal Gaussian mixture model, extend icl_model-class.
The model corresponds to the following generative model:
$$ \pi \sim Dirichlet(\alpha)$$
$$ Z_i \sim \mathcal{M}(1,\pi)$$
$$ \lambda_k^{(d)} \sim \mathcal{G}(\kappa,\beta)$$
$$ \mu_k^{(d)} \sim \mathcal{N}(\mu,(\tau \lambda_k)^{-1})$$
$$ X_{i.}|Z_{ik}=1 \sim \mathcal{N}(\mu_k,\lambda_{k}^{-1})$$
with \(\mathcal{G}(\kappa,\beta)\) the Gamma distribution with shape parameter \(\kappa\) and rate parameter \(\beta\).
namename of the model
alphaDirichlet over cluster proportions prior parameter (default to 1)
tauPrior parameter (inverse variance), (default 0.01)
kappaPrior parameter (gamma shape), (default to 1)
betaPrior parameter (gamma rate), (default to NaN, in this case beta will be estimated from data as 0.1 time the mean of X columns variances)
muPrior for the means (vector of size D), (default to NaN, in this case mu will be estimated from data as the mean of X)
Bertoletti, Marco & Friel, Nial & Rastelli, Riccardo. (2014). Choosing the number of clusters in a finite mixture model using an exact Integrated Completed Likelihood criterion. METRON. 73. 10.1007/s40300-015-0064-5. #'
new("diaggmm")#> An object of class "diaggmm" #> Slot "tau": #> [1] 0.01 #> #> Slot "kappa": #> [1] 1 #> #> Slot "beta": #> [1] NaN #> #> Slot "mu": #> [1] NaN #> #> Slot "name": #> [1] "diaggmm" #> #> Slot "alpha": #> [1] 1 #>new("diaggmm",alpha=1,tau=0.1,beta=0.1)#> An object of class "diaggmm" #> Slot "tau": #> [1] 0.1 #> #> Slot "kappa": #> [1] 1 #> #> Slot "beta": #> [1] 0.1 #> #> Slot "mu": #> [1] NaN #> #> Slot "name": #> [1] "diaggmm" #> #> Slot "alpha": #> [1] 1 #>