An S4 class to represent a degree corrected stochastic block model for co_clustering of bipartite graph.
Such model can be used to cluster graph vertex, and model a bipartite graph adjacency matrix \(X\) with the following generative model :
$$ \pi \sim Dirichlet(\alpha)$$
$$ Z_i^r \sim \mathcal{M}(1,\pi^r)$$
$$ Z_j^c \sim \mathcal{M}(1,\pi^c)$$
$$ \theta_{kl} \sim Exponential(p)$$
$$ \gamma_i^r\sim \mathcal{U}(S_k)$$
$$ \gamma_i^c\sim \mathcal{U}(S_l)$$
$$ X_{ij}|Z_{ik}^cZ_{jl}^r=1 \sim \mathcal{P}(\gamma_i^r\theta_{kl}\gamma_j^c)$$
The individuals parameters \(\gamma_i^r,\gamma_j^c\) allow to take into account the node degree heterogeneity.
These parameters have uniform priors over simplex \(S_k\).
These classes mainly store the prior parameters value \(\alpha,p\) of this generative model.
The DcLbm-class
must be used when fitting a simple Diagonal Gaussian Mixture Model whereas the DcLbmPrior-class
must be sued when fitting a CombinedModels-class
.
DcLbmPrior(p = NaN)
DcLbm(alpha = 1, p = NaN)
Exponential prior parameter (default to Nan, in this case p will be estimated from data as the average intensities of X)
Dirichlet prior parameter over the cluster proportions (default to 1)
a DcLbmPrior-class
a DcLbm-class
object
DcLbmFit-class
, DcLbmPath-class
Other DlvmModels:
CombinedModels
,
DcSbm
,
DiagGmm
,
DlvmPrior-class
,
Gmm
,
Lca
,
MoM
,
MoR
,
MultSbm
,
Sbm
,
greed()
DcLbmPrior()
#> An object of class "DcLbmPrior"
#> Slot "p":
#> [1] NaN
#>
DcLbmPrior(p = 0.7)
#> An object of class "DcLbmPrior"
#> Slot "p":
#> [1] 0.7
#>
DcLbm()
#> An object of class "DcLbm"
#> Slot "alpha":
#> [1] 1
#>
#> Slot "p":
#> [1] NaN
#>
DcLbm(p = 0.7)
#> An object of class "DcLbm"
#> Slot "alpha":
#> [1] 1
#>
#> Slot "p":
#> [1] 0.7
#>