An S4 class to represent a Multinomial Stochastic Block Model. Such model can be used to cluster multi-layer graph vertex, and model a square adjacency cube \(X\) of size NxNxM with the following generative model :
$$ \pi \sim Dirichlet(\alpha)$$
$$ Z_i \sim \mathcal{M}(1,\pi)$$
$$ \theta_{kl} \sim Dirichlet(\beta)$$
$$ X_{ij.}|Z_{ik}Z_{jl}=1 \sim \mathcal{M}(L_{ij},\theta_{kl})$$
With \(L_{ij}=\sum_{m=1}^MX_{ijm}\). These classes mainly store the prior parameters value \(\alpha,\beta\) of this generative model.
The MultSbm-class
must be used when fitting a simple MultSbm whereas the MultSbmPrior-class
must be sued when fitting a CombinedModels-class
.
MultSbmPrior(beta = 1, type = "guess")
MultSbm(alpha = 1, beta = 1, type = "guess")
Dirichlet prior parameter over Multinomial links
define the type of networks (either "directed", "undirected" or "guess", default to "guess"), for undirected graphs the adjacency matrix is supposed to be symmetric.
Dirichlet prior parameter over the cluster proportions (default to 1)
a MultSbmPrior-class
object
a MultSbm-class
object
MultSbmFit-class
, MultSbmPath-class
Other DlvmModels:
CombinedModels
,
DcLbm
,
DcSbm
,
DiagGmm
,
DlvmPrior-class
,
Gmm
,
Lca
,
MoM
,
MoR
,
Sbm
,
greed()
MultSbmPrior()
#> An object of class "MultSbmPrior"
#> Slot "beta":
#> [1] 1
#>
#> Slot "type":
#> [1] "guess"
#>
MultSbmPrior(type = "undirected")
#> An object of class "MultSbmPrior"
#> Slot "beta":
#> [1] 1
#>
#> Slot "type":
#> [1] "undirected"
#>
MultSbm()
#> An object of class "MultSbm"
#> Slot "alpha":
#> [1] 1
#>
#> Slot "beta":
#> [1] 1
#>
#> Slot "type":
#> [1] "guess"
#>
MultSbm(type = "undirected")
#> An object of class "MultSbm"
#> Slot "alpha":
#> [1] 1
#>
#> Slot "beta":
#> [1] 1
#>
#> Slot "type":
#> [1] "undirected"
#>